
Virtue - a Different Approach To
Human/Computer Interaction

Zorislav Šojat, Tomislav Ćosić, Karolj Skala*

* RBI/CIC, Zagreb, Croatia
sojat@irb.hr, tcosic@irb.hr, skala@irb.hr

Throughout the development of computing tools usage and
computer science, from the calculating machines up and
into the present day computers, the major technical
problem to be solved was the reduction of the amount of
components and their bulk. This led inevitably to the use of
serial processing. Only quite recently we started mass
producing and using multi-processing. Though the nature
itself is infinitely parallelised, the technical problems of
computer development led also to the development of such
software tools and programming languages which mirrored
the serial nature of computers, so that the serialisation of
parallel natural processes is performed by humans, the
programmers. However, modern day developments of
scientific and every-day needs for computing power have led
to the introduction of multiprocessors, GPUs, clusters, grids
and clouds of computers, as to ascertain enough processing
speed, power and memory for very complex algorithms.
However, the human/computer interaction that supports
these developments is still heavily based on “classical”
computer programming languages, serial programming,
and the multi-computer environment is accessed only
through programmed interfaces, where all the burden of
parallelising the, now well known, serial algorithms is again
the job of (human) programmers.

Virtue is a development primarily based on the idea - as
there already is so much we know of mathematical, logical
and other important basic algorithms used in many fields,
and their computer implementation(s) - that we would be
able to “raise” the level of computer “understanding” more
towards the level of our own, human language
communication. This means that, for example,
mathematical operations in Virtue are performed not only
on integers and reals (floats), but also on complex numbers,
quaternions and octonions, and that they are freely
intermixed. Or that all logical operations work also on
multi-levelled and multi-dimensional logical values (and not
just Boolean). These are mathematically well defined
operations used very often in visualisations, as well as
scientific modelling. Furthermore, another basic underlying
idea of the development of Virtue is that the language
developed may not destroy a possibly parallel structure of
data, which then allows direct and user (human)
independent automatic parallel execution. Within such an
approach interactive sentences can be “decoded” (executed,
performed, saved, used...) on a single processor, a multi-
core, multiprocessor, GPU, cluster, grid or cloud system, or
any combination of them.

Designed on these basic principles, Virtue is a language
which proposes a different approach, by keeping the
inherent parallel structure of natural algorithms, and doing
the parallel processing by itself, if it is algorithmically
possible. Virtue is a syntactically very simple, yet

semantically extremely complex language, offering no
“reserved words”, synonyms, automation of memoisation,
multiple word contexts, combined data types of anything
Virtue supports (e.g. functions, symbol names, scalars,
multidimensional sub-structured arrays etc.), stochastic
processing, multivalued and multidimensional logic
operations, multidimensional sub-structured file access
structures, continuations etc.

Therefore, due to this semantic richness and grammatical
simpleness, in Virtue, for example, the text of the algorithm
for Conway's “Game of Life” necessitates only 12 language
tokens (7 words, 14 numbers in 3 vectors and 2 delimiters)
in one sentence.1

Further development of the idea allows for development of a
more syntactically rich very high level human oriented
machine interaction language, which, combined with
additional artificial intelligence components, appropriate
ergonomic human presentation/sensory interfaces and with
the integration of user style association memory, we
sincerely hope can help the future development of
Computer Science and Usage Practice.

I. INTRODUCTION

The challenges of the modern day world, the
development of sciences and the development of social
networking change quite radically the way computers are
used as compared to the time when most of the basic
computer construction principles were innovated. By basic
computer construction principles we primarily mean the
basic computer architecture based on monolithic
processors executing serially specific instructions on
individual values. Though many of the challenges of
multiprocessing, execution parallelism, big data, cluster,
grid and cloud computing are more or less, on the
architectural level, solved, and throughout the
development of computing a lot of physical and technical
problems of multi-processing cooperation were solved and
are being solved, there is still a huge lack in the
development of appropriate human oriented interfaces
with these (primarily hardware/firmware/systemware)
complex integrated and/or dispersed computing systems.

Modern age computing needs to solve several
important problems. We have to deal with enormous
amounts of data which shall be mined, we necessitate
High Performance Computing focusing on tightly coupled

1 MONADIC (1 1 1 1 0.5 1 1 1 1) [3 3] MONADIC RAVEL SUM
(2.5 3 3.5) IDENTICAL ANY; MASK;. This programme will work
for any size of the “Game of Life” board.

mailto:skala@irb.hr
mailto:tcosic@irb.hr
mailto:sojat@irb.hr

parallel jobs for complex scientific and modelling
applications, High Throughput Computing focusing on the
efficient execution of a large number of loosely-coupled
tasks, we need the Internet of Things, where individual
appliances interrelate, and we need Personal Assistants...

And finally we have also a stringent need for High
Productivity Computing, which stresses the importance of
global Human-computer interaction results, i.e. the
productivity, and not just the pure performance of the
(already programmed) computer. High Performance
Computing means speeding up the process of defining a
problem to be solved and obtaining the results from the
computer, that is shortening the overall problem solving
time. That means that High Productivity Computing is
primarily oriented towards shortening the time necessary
to solve a new problem, that is, the time which is
necessary for a Human to coordinate efforts with the
Computer in getting an answer to a freshly thought out
idea (i.e. problem to be solved).

The Virtue project is actually a product of a wish to
integrate the present day computer science knowledge, as
much as possible and feasible, into a consistent linguistic
framework, with features which enable it to be “levelled
up” towards the Human language communication
possibilities, as to provide a personalised communication
experience.

II. PRESENT STATE OF THE ART

Throughout centuries of the development of
computing equipment serial processing was more or less
the only option, therefore, after the event of modern day
computing, from the first half of the 20th century, and the
development of programming languages, most of the
computer-linguistic effort was put into the development of
conventional serial programming languages. And, to cite
John Backus from his ACM paper of 1978(!):
“Conventional programming languages are growing ever
more enormous, but not stronger. Inherent defects at the
most basic level cause them to be both fat and weak: their
primitive word-at-a-time style of programming inherited
from their common ancestor—the von Neumann
computer, their close coupling of semantics to state
transitions, their division of programming into a world of
expressions and a world of statements, their inability to
effectively use powerful combining forms for building
new programs from existing ones, and their lack of useful
mathematical properties for reasoning about programs.”
"Programming languages appear to be in trouble. Each
successive language incorporates, with a little cleaning up,
all the features of its predecessors plus a few more." "Each
new language claims new and fashionable features, such
as strong typing or structured control statements, but the
plain fact is that few languages make programming
sufficiently cheaper or more reliable to justify the cost of
producing and learning to use them." "For twenty years
programming languages have been steadily progressing
toward their present condition of obesity; as a result, the
study and invention of programming languages has lost
much of its excitement."

Now it is already 36 years after John Backus made this
statement, so his statement would today cite "For almost

60 years...”. Because, unfortunately, modern day
developments continued down these lines with those very
few extremely popular and very programmer unfriendly
languages like C, C++, Java, and a whole bunch of their
syntactic followers, then the popular "scripting"
languages, and the vast overpopulation of all kinds of so
called "Application Programming Interfaces"
superimposed over the already overcrowded linguistic
situation of those languages, including the fact that some
of such "language extension" interfaces even claim to be
"languages" (e.g. OpenGL claims to be a Graphical
Language, but is actually a very complicated, even
complex, API). We can actually see that what Backus said
so many years ago is getting towards human limits of
comprehension possibilities. And this basic problem is
actually the main bottleneck of our present day human-
computer productivity.

Imagine a mathematically simple and effective
visualisation – a four-dimensional hypersphere to be
rendered as simple asterisks showing all the dots inside
the sphere’s radius, and spaces outside, the third and
fourth dimension to be shown as two-dimensional slices.
By just looking at such a very elementary visualisation the
basic structure of the hypersphere can be easily deduced.
Now find a C, C++ or Java programmer and ask him to
make a short program to show such a sphere to you... And
now, after they have shown you this four-dimensional
sphere, ask them to show to you how it would look like in
5 or 6 dimensions... Or, better, do not ask them to do any
of that for you in such a language, as it would take quite a
lengthy time even for the best. (A non-optimised solution
which we prototyped in C for 4 dimensions has more then
130 lines of source code!2 An optimized version would
take much longer to develop.) And it is a kind of "one-
execution is enough" request and programme.

But with the all-penetrating spread of computer
equipment, networking, and data collecting and serving
there are vast and rapidly growing needs for new
computer applications on all levels of the human
civilisation.

We started tackling these problems systematically
several years ago, and an investigation into basic
principles of computer programming, as well as the
principles by which we serialize the inherently extremely
massively parallel universe around us into serial
algorithms was performed - and a new approach taken.

One of the major points which started being obvious
during the investigation of the programming principles is
that most (or almost all commonly used) computer
languages, being primarily serially oriented both in their

2 The definition of a new Virtue verb "sphere" which solves the above
problem for any number of dimensions up to 8 -- taking three scalar
numerical objects, expressed as two two-dimensional numbers (complex
- 2d, quaternion -3d or 4d, or octonion -5d, -6d, -7d or -8d) for the
centre and the space-size, and a real number – the radius -- is this
sentence: TRIADIC SPACE CENTRE MAGNITUDE GREATER '*'
MULTIPLY; OPERATOR @sphere SET.
 What it says is that you want to have asterisks wherever the radius is
greater than the magnitude of the centered space elements. The verb
SPACE (synonymous to INTERVAL) with a scalar numerical object
makes a space of indices from 1 (or 1i1, 1i1j1, 1i1j1k1...). The word
CENTRE is a simple synonym for the verb SUBTRACT.

semantics and in their syntax – i.e. in their whole
grammar, enforce the de-contextualisation of their data
structures mostly in their imperative parts. In other words
this means that though a complex data structure may be
declared in the language, the operations on that data
structure are linguistically restricted on individual data
elements from that data structure. As a consequence of
this approach the context of the individual data elements
in a data structure has been erased from the programme,
leading to important information loss, and the language
executor (compiler, interpreter, assembler…) has
theoretically3 no possibility to ‘know’ that the user is
actually doing parallel processing in a serial way.

Interestingly enough, although obviously a
consequence of the above-mentioned centuries of serial
computing4, there are not many computer languages at all
which do not do this ‘de-contextualisation’ of their data
structure operations – notably between these are APL and
APL-children (APL2, J, K, A+…), and the ‘array
processing’ linguistic branch. Unfortunately, of those few
languages which keep the operations context available for
the executing processor and therefore allow the processor
(usually an interpreter, not the low level processing units)
to make intelligent decisions on the automatic
parallelisation of each particular operation on (possibly)
different data structures5 there is presently (2014) no
publicly (particularly open-source) available parallel
implementations we are aware of. Many so-called parallel
programming languages actually necessitate explicit
programmer description of the parallelistic execution, as
well as (for example in Occam) explicit inter-serial-part-
of-the-parallel-algorithm communication.

III. APPROACH

Based on the above, the approach was taken to define
a new data processing language, or better to say a new

3 Practically it is possible to automatically regain a certain knowledge
on the data element context in specific cases, as e.g. when a loop
transiting an array has a fixed number of iterations – based on pre-
execution knowledge (by the programmer) of e.g. how many elements
are in the processed data structure. There are certain “parallelising”
compilers on the market for several much used languages, but they can
do the “parallelisation” of the algorithm described in a serial language
only for very special cases. Theoretically, the lost context information is
not regainable.
4 It is probably important to mention that between humans, e.g. in
mathematics, the algorithms (as for example mathematical formulas) are
described in a contextfull way, however, due to our own restrictions, we
always calculate the results stepwise, usually completing as much as
possible work on one element of an array before proceeding to the next,
which is usually by applying the given formula completely on
individual data points. This inherently human approach may have also
lead to the adoption of strictly serial programming languages in the past.
 Parallel programming mindframe, on the other hand, starts with the
same contextfull algorithm (e.g. formula), but, as opposed to the serial
mindframe, executes not the whole formula on the first data structure
element, and then again on the next, but executes the first operation
from the formula on each data element of the structure (e.g. array) in
parallel, before proceeding to the next operation from the formula.
5 This is, naturally, dependent on a particular language implementation,
although it is ‘automatic’ due to the fact that the actual execution
parallelisation has to be developed by the language implementor, and
the “programmer” does not have to think at all about how much and
which of her (or his) algorithm is executed in parallel, and on how many
computing resources.

data processing language family, which would allow
reasonably simple algorithm description for complex data
structures, and which would allow the lowest level
“processor” to automatically distribute (parallelise) the
operations execution on a set of processing units.
Generally the idea is to have a hierarchy of languages,
whereas the lowest level one, described on these pages,
has to be as close to the computer hardware level as
possible, given the imposed complexity, and should
actually behave as a Virtual Executor. The job of the
Virtual Executor is to do all the necessary execution and
parallelisation during execution based on the data, i.e. data
types and data structures. Therefore it could be said that
the resulting Virtual Executor is parallely programme and
data structure driven.

The idea of such a language system was born when
clusters of computers and grids started being developed on
top of single-processor, multiprocessor, multithreading
and multicore computers, as well as supercomputers of
different architectures.

The major question with these collections of systems
is: How do we programme them in a uniform, efficient
and reasonably simple way? How do we integrate
computers of different speeds, processors, memory sizes,
computation widths6 and byte sexes?

Is it possible to develop a Language system which
could cope with the necessities of High Productivity
Computing, High Performance Computing, High
Throughput Computing, Big Data, Visualisations, Internet
of Things... and be seamlessly applicable to an indefinite
number of processing stations?

“What might a language look like in which parallelism
is the default? How about data-parallel languages, in
which you operate, at least conceptually, on all the
elements of an array at the same time? These go back to
APL in the 1960s, and there was a revival of interest in the
1980s when data-parallel computer architectures were in
vogue. But they were not entirely satisfactory. I'm talking
about a more general sort of language in which there are
control structures, but designed for parallelism, rather than
the sequential mindset of conventional structured
programming. What if do loops and for loops were
normally parallel, and you had to use a special declaration
or keyword to indicate sequential execution? That might
change your mindset a little bit.” (Guy Steele, Dr Dobbs
Journal 24 Nov 2005).7

With these questions in mind the development of the
Virtue system started several years ago.

IV. VIRTUE

The result of this approach is the first version of
Virtue – a grammatically extremely simple, yet

6 I.e. 32 or 64 bit, as well as other bit sizes – 8 and 16 for
microcontrollers, possibly 128 or other number of bits for special
computing equipment, half, normal and double, as well as extended
floating point formats etc.
7 In Virtue there are logical rules which define which combinations of
objects can be processed in parallel and which must be processed in
serial. These rules are internal and are actually inherently semantic
regarding the verbs applied to the objects, i.e. data.

semantically extremely rich Language, which is internally
and externally “resizeable”. What we mean by
“resizeable” is that the amount of words which are
understood (i.e. executed) by Virtue can be effortlessly
expanded (externally, by defining new words), and that
the internal knowledge of computing can be both
expanded and shrunken. So for example an embedded
version of Virtue would have a reduced amount of words
as well as data types, and a Visualisation version would
have to know specific words, whereas a Modelling
version could have special words for often used
algorithms. Furthermore, the “resizeability” of Virtue is
automated by it's possibility to encompass a wider range
of computers, depending on the scale of the problem to
be solved.8

Actually Virtue is defined to be a Virtual Executor, a
kind of system-ware/between-ware, a Language system
taking the role of an Inter-actor between a Computer
System and a Human.

Let's look at the particulars of what we want to say
with this definition of Virtue's aims:

A. Computer System

A computer system in the above definition is actually
any possible hardware or software device which
understands the grammar of Virtue. These then could be
just simple appliances, or the Computer System could be
a grid of supercomputers or whatever else, like server
farms, clusters etc.

As said, any computer system can be part of the Virtue
linguistic space, as long as it understands the common
standardised Virtue Data structure. For new knowledge,
i.e. when a computer system with less features (e.g. a
Virtual Executor which can process only integer
numbers) has to solve problems it can not solve based on
these, it will automatically invoke (if possible) another
network based Virtual Executor which knows how to
process this data and/or words. New words, if they can be
processed in a Virtual Executor, would be just transferred
as explanations, but data which can not be locally
processed will always stay on the computer that was
asked to process this part of the overall data structure.
From the perspective of the Human user, the data would
appear as if it would be locally processed and saved.

And finally, the most important feature of a Computer
shall certainly be to know at the lowest, hardware or
firmware level of execution, that which in Computer
Science, Mathematics, Logic... we already have
developed as long proven methods and algorithms, and
which are regularly used.

B. Virtual Executor

The Virtual Executor is actually the basic (or very
expanded) Virtue linguistic system on a Computer
system. It is the Virtual Executor who enables Computer

8 The present experimental implementation of Virtue uses only SMP.
Work is in progress to encompass TCP/IP communication protocols
with other computers running the Virtue system, by which all those
processors/computers become a single large compute-assistant. The
internal architecture of the experimental implementation is already
prepared for multi-computer parallelism.

systems to understands the Virtue language – so it is the
Virtual Executor who is the collocutor in the Human-
Computer interaction.

An important feature of a Virtual Executor is that all
instructions and definitions ever written in the Virtue
language will suddenly start being 10% faster, without
any additional effort (except the installation of a better
version of Virtue) if the Virtual Executor is sped up by
10%. Contrary to this, no C written executable
programme in the world will suddenly start being faster if
a new compiler version is available, which produces a
10% faster code, without the specific effort of
recompiling all the executables.

C. Human

The Human is the driving force of Human
development. To be able to express all of his Human
innovation capacity, and to intelligently behave in the
present day information-oriented world, it is necessary
for her to be able to constantly process all kinds of data
and thoughts.

In this sense a Human presently more and more needs
an assistant, which will perform operations like
computations, data searching and problem solving, he
needs in the intellectual, informational field - something
we for a long time use in the physical environment –
amplifiers. To move a huge rock, we use an amplifier of
our own feeble movements. To solve a huge problem, we
need to use an amplifier of our huge problem solving
abilities. We actually need this which William Ross
Ashby decades ago said, we need a “computer as an
intelligence amplifier”. And exactly this is what is the
final aim of Virtue – interactive communication with the
Human, algorithm to Virtue – answer to Human. Or
question to Virtue – algorithm to Human.

Virtue is aimed towards allowing the Computer to
become an intelligent human assistant.

D. Language

Long years of investigations into Human languages,
all the worlds linguistic efforts show that the Language is
the primary means of Human external world model
forming, and his absolutely prime and most developed
communication and understanding system.

Therefore, it is absolutely essential, to be able to
actually fully integrate computers into the modern world
Human society as intelligence amplifiers, to raise the level
of Computer's language understanding towards the level
of a full Human language, i.e. allowing the Human-
Computer interaction language to be able to provide
external world models for both of them.

V. DATA TYPES

Virtue has complex data structures (scalars, arrays of
any dimension, array elements which are themselves
structures of scalars or arrays…) and diverse data types
(booleans; multidimensional fuzzy logicals; characters;
numbers – real, complex, quaternion, octonion; addresses;
functions; labels; files; or possible specific types like
planetary ephemeris, pixels etc.).

The inclusion of e.g. functions as data types, inter-
mixable with any other data-type, as well as the form in
which the programme itself is internally represented - in
the exactly same way as data, enables Virtue to use, for
example, variable functions whenever necessary, or to
define function parallelism (e.g. by applying a vector of
functions to a vector of values).

Files are also scalar data types, which means that they
can be inside a multidimensional structured array (there is
no theoretical limit to the number of open files in Virtue,
the same as with the dimensionality of arrays). Each use
of an argument which is a File (or contains a File in its
structure) will read the data from the file, and provide the
data defined by a “prototype record” supplied when the
file was opened (i.e. to open a file a name and a prototype
record is given) for the pending operation. This
linguistically very simple and understandable approach
allows for very complex data manipulation across a huge
range of input data-sets and processing systems.

Virtue has an almost fully orthogonal approach
towards data – any operation that has sense is usable.
However, nonsensical operations (like e.g. square root of a
character) are strictly disallowed. The execution
framework of Virtue is very forgiving, yet strict, in
imposing the processing rules for different combinations
of data structures and data types.9

Further important features of Virtue include the
complete lack of reserved words or symbols10, synonyms,
word dependant hierarchical contexts, continuations, and
the possibility to use any data whatsoever as a name for
something else.11

VI. SERIAL VERSUS PARALLEL PROCESSING

The Virtue Language is designed to keep as many
logically parallel algorithmic structures expressed in such
a way that the parallelism is obvious. However, an
algorithm is, per definitionem, a series of operations,
possibly intermixed with decision making.

Virtue tries to keep consistency inside the two sets of
operations, the:

 serial operations

 parallel operations

However, it should be noted, that the whole language
can be implemented on a purely serial computer, but can
also be implemented on parallel data processing

9 For example, a dyadic (two argument) operation on arrays whose
dimensions are not equal is prohibited, except if one of the argument
array dimensions is a subset of the other argument’s array dimensions,
or one of the arguments is a scalar.
10 Except the symbol '::', which reverts any redifined internal Virtue
word or symbol to its original meaning, and the symbol '.', which
always marks the end of a sentence.
11 For example the sentence 'A vector of numbers from 1 to
1000' 1000 INTERVAL AT SET. will save the given string under the
name of a vector from 1 to 1000. To recall the string from memory,
such a vector shall be given, as for example: 900 INTERVAL (901
902) CATENATE 98 INTERVAL 902 + CATENATE GET. This
sentence will then give the answer “A vector of numbers from 1
to 1000”.

equipment (multiprocessor, vector, cluster, grid...). The
consistency of semantic distinction between parallel (i.e.
parallelisable) and serial (non-parallelisable) instructions
in an program on many levels does not a-priory dictate the
implementation of Virtue. Although multidimensional
logical values are parallel constructs, it would be counter-
productive to parallelise a logical operation on 2, 4 or 8
individual values (or wouldn't it?). However operations on
conformable multi-dimensional arrays are also parallel
constructs, but it would be very advisable to implement
them in parallel on several independent processing units.

It is important to understand that not all constructs
may be safely executed in parallel, although applied to
conformable arrays of enough elements. Although, for
example, the application of functions on vectors/arrays
may be a parallel operation, it must be serialized if the
function has side effects.

Such a strict distinction is necessary, as there is no a-
priory order in parallel operations, and there is no
communication possible between strictly parallely
executing operations.

Already during the analysis and/or during the
processing Virtue will introduce into the internal Data
Description (in this particular case of a function) a flag
indicating if it may be executed in parallel, or the
processing must be serialised. So, for example, by using
input/output commands or global variables in a function
which otherwise could be executed parallely, Virtue will
automatically flag that condition, and serialise the
execution. In the same time, these conditions in a
functional sentence will prevent it from being memoised.

As another example of usage of the Data Description,
an argument whose any element was produced by a
random number generator (which indicates stochastic
processing) applied to a normally memoisable function
will prevent the memoisation of this function with that
particular argument. This is necessary as otherwise
simulations relying on random number generation would
not properly work if memoisation is used. It will,
naturally, normally work with all data which was not
produced by manipulation of a random number.

It is obvious that with such internal structures the
Human does not have to take care of the way his problems
will be solved on a hardware level – serially, parallely, or
in a concurrent combination of the two (for example more
processors executing different functions on a vector, and
using vector processors to execute parallel operations
inside those functions). Virtue will execute SIMD,
MIMD, MISD and SISD, even concurrently, as possibly
in the above example. This makes the Virtue system
widely adaptable to the underlying hardware, as any of the
hardware architectures possibly used will excel in at least
some aspects of execution.

VII. THE IMPLEMENTATION OF VIRTUE

The Virtue Language is fully defined in it's primary
form.

The computer implementation is presently in Alpha 0.6
state, and parallelisation is implemented on SMP systems.

The experimental implementation is constantly
parallely developed and tested on a very wide range of
different computers, ranging from the mid-1980-ies Sun3
(16MHz/16MiB and 20MHz/24MiB) workstations up to
modern day blades, with various operating systems and
their generations (SunOS, Solaris, NetBSD, FreeBSD,
Linux, Win), various processors (68k, MIPS, SPARC,
PowerPC, AMD, Intel), on 32 and 64 bit processors in
single-processor and SMD multi-processor, multi-
threading and multi-core computers. Such a wide range of
computers, both historically and speed-wise, for the
experimental Virtue implementations allows for a
development of a very easily adaptable system, and the
behaviour of the old Sun3 systems shows that even on
them the execution seems very fast for the amount of data
which can be represented in the memory of those
computers12.

The internal speed measurements which the Virtue
Executor has (and they are important for the future multi-
computer implementations, to allow load balancing) have
provided us with quite a lot of important data on the
behaviour of different computer systems and different
processors, so an investigation into the "speed of a
computer" is presently being performed, with some results
to be presented soon.

VIII. CONCLUSION

Virtue is a pliable language, shrinkable and extensible,
but generically compatible as a Language on all possible
levels of implementation. Therefore it could be
implemented in hardware, as a specific processor, it could
be small and embedded, but it could automatically grow
towards huge systems and big data. The idea of a
Language even in the inter-computer communication,

12 The classical double recursive algorithm for calculating the n-th
number of a Fibonacci series could be expressed in Virtue for example
thus: MONADIC DUPLICATE 3 < @%a IF JUMP DUPLICATE 1
SUBTRACT Fibonacci! SWAP 2 SUBTRACT Fibonacci! ADD
RETURN %a DISCARD 1; @Fibonacci SET. The sentence, translated
into English, says: "Check if the requested Fibonacci series element
number is less then 3, if not subtract 1 from this number and calculate
that Fibonacci (series element), then subtract 2 from the same number
and calculate the Fibonacci, otherwise (if the number was < 3) jump to
conclusion, forget that number and just return 1, then remember this
phrase, which expects one object, as the word 'Fibonacci').
 The calculation of all the first 1500 Fibonacci series numbers
(slightly over the limit of IEEE double FP) on a 1987. Sun3/60 (SunOS
4.1.1, original Sun cc compiler, MC68020+MC68881, 20MHz, 24MiB
32-bit RAM - ~3MIPS, 192 kFLOPS) using this algorithm with the
memoisation word RESULT - that is inputing the sentence 1500
INTERVAL MONADIC Fibonacci RESULT; EACH. (in English: "Make
an interval vector from 1 to 1500, then for each element of the vector
calculate the Fibonacci, but first check if you already remembered the
result.") - the vector of those first 1500 (!) Fibonacci numbers will be
produced after just 27.827s, whereas the next time the same sentence is
entered, the results will come in just 4.461s. Such speed is fully
acceptable for normal work! Modern day common computers are
several hundred times faster (not several thousand times, as would be
expected from the MIPS/GIPS relationship. Just one example: a
recently tested 1.67GHz Intel Atom in a reputable notebook with 2GiB
667.0 MHz DDR2 SDRAM memory, on Windows 7/32, Microsoft
Visual Studio 2010 Express C compiler, performed the above operations
in 0.21s (first time), and in 0.045s (afterwards), a speedup compared to
Sun-3 of only around 100 times, despite the high sounding numbers.
The reason is the more and more intensively felt “von Neumann
bottleneck” - the memory vs. processor speed and channel constraints!)

allows for Virtual Executors which do not recognise a
word the user used, to consult (if on network) other
known, but probably bigger Virtual Executors about the
meaning of the word, and/or help in the execution of a
task.

The final aim of this long-term effort is to provide a
“human assistant”, an intelligent, selflearning and
selforganising “assistant” in this more and more complex
life environment.

From the level of being a chip, or a programme in a
chip, able to monitor, coordinate and regulate processes in
complicated systems, up to the level of data mining in
distributed environments, Virtue is aimed to provide a
seamless integration.

As a mathematical processor, as a Grid Library
Application, as a Modelling Tool, Visualisator or a
data/calculation preprocessor...

REFERENCES:
[1] John Backus “Can Programming Be Liberated from the von

Neumann Style? A Functional Style and Its Algebra of Programs”,
Communications of the ACM, Vol 21, No. 8, pp. 613-641, August
1978., http://delivery.acm.org/10.1145/360000/359579/a1977-
backus.pdf?
ip=93.136.170.6&id=359579&acc=OPEN&key=4D4702B0C3E38
B35%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E6D2
18144511F3437&CFID=415707851&CFTOKEN=76568762&__a
cm__=1393661168_49edb86547c11a2260a8d1ad8731f4b4

[2] Barendregt, H.P. and Eekelen, M.C.J.D. and Hartel, P.H. and
Hertzberger, L.O. and Plasmeijer, M.J. and Vree, W.G. (1987):
"The Dutch parallel reduction machine project". Future Generation
Computer Systems, 3 (4). pp. 261-270. ISSN 0167-739X,
http://doc.utwente.nl/55757/1/dutch.pdf

[3] Borna Bebek, Zorislav Šojat: "Optimal Distribution of
Organisational Resources", Diplomatic Academy Year–Book,
Edition: Central European Initiative – International Conference
"Diplomacy for the twenty-first century: knowledge management",
Vol. 2/2000, No. 1, HR: Ministarstvo vanjskih poslova i europskih
integracija; 2000

[4] EGI Glossary; European Grid Initiative WIKI,
https://wiki.egi.eu/wiki/Glossary_V1, 22/2/2014, 21:56

[5] "Gannett's Law",
http://0x07bell.net/WWWMASTER/CrayWWWStuff/Glaw.html

[6] Tomislav Grubesa, Goran Topic, Valentin Vidic, Zorislav Sojat,
Karolj Skala: "Towards the Design and Application of Grid
Portals", Hypermedia and Grid Systems, MIPRO, Opatija, Croatia;
06/2005

[7] Roland N Ibbett & Nigel P Topham (1996): “HIGH
PERFORMANCE COMPUTER ARCHITECTURES - A
Historical Perspective”, http://homepages.inf.ed.ac.uk/rni/comp-
arch/index.html

[8] Sinisa Marin, Robert J. Thorpe, Zorislav Sojat: “A Modular Robot
Programming System”, 1989; London, GB: RDP Technology.

[9] Sinisa Marin, Mihajlo Ristic, Zorislav Sojat: “An Implementation
of a Novel Method for Concurrent Process Control in Robot
Programming”, Third International Symposium on Robotics and
Manufacturing: Research, Education and Application, ISRAM ‘90,
Burnaby, BC/CA; 1990

[10] John Owens "Data Level Parallelism (2)" EEC 171 Parallel
Architectures, UC Davis,
http://www.nvidia.com/content/cudazone/cudau/courses/ucdavis/le
ctures/dlp2.pdf 1/3/2014, 6:13

[11] Nikola Pavkovic, Karolj Skala, Valentin Vidic, Zorislav Sojat:
"Bioinformatics Application Oriented IT Deployment Model",

http://homepages.inf.ed.ac.uk/rni/comp-arch/index.html
http://homepages.inf.ed.ac.uk/rni/comp-arch/index.html
http://doc.utwente.nl/55757/1/dutch.pdf
http://0x07bell.net/WWWMASTER/CrayWWWStuff/Glaw.html
https://wiki.egi.eu/wiki/Glossary_V1
http://delivery.acm.org/10.1145/360000/359579/a1977-backus.pdf?ip=93.136.170.6&id=359579&acc=OPEN&key=4D4702B0C3E38B35.4D4702B0C3E38B35.4D4702B0C3E38B35.6D218144511F3437&CFID=415707851&CFTOKEN=76568762&__acm__=1393661168_49edb86547c11a2260a8d1ad8731f4b4
http://delivery.acm.org/10.1145/360000/359579/a1977-backus.pdf?ip=93.136.170.6&id=359579&acc=OPEN&key=4D4702B0C3E38B35.4D4702B0C3E38B35.4D4702B0C3E38B35.6D218144511F3437&CFID=415707851&CFTOKEN=76568762&__acm__=1393661168_49edb86547c11a2260a8d1ad8731f4b4
http://delivery.acm.org/10.1145/360000/359579/a1977-backus.pdf?ip=93.136.170.6&id=359579&acc=OPEN&key=4D4702B0C3E38B35.4D4702B0C3E38B35.4D4702B0C3E38B35.6D218144511F3437&CFID=415707851&CFTOKEN=76568762&__acm__=1393661168_49edb86547c11a2260a8d1ad8731f4b4
http://www.nvidia.com/content/cudazone/cudau/courses/ucdavis/lectures/dlp2.pdf
http://www.nvidia.com/content/cudazone/cudau/courses/ucdavis/lectures/dlp2.pdf

Parallel Numerics, Theory and Application; Salzburg : University
of Salzburg Austria(2005):217-222; 2005

[12] Karolj Skala, Zorislav Sojat: "Towards a Grid Applicable Parallel
Architecture Machine.", Computational Science - ICCS 2004, 4th
International Conference, Kraków, Poland, June 6-9, 2004,
Proceedings, Part III; 2004

[13] K. Skala, Z. Sojat: "Image Programming for Scientific
Visualization by Cluster Computing", Autonomic and Autonomous
Systems and International Conference on Networking and Services,
ICAS-ICNS; 2005;

[14] Karolj Skala, Nikola Pavkovic, Zorislav Sojat: "Scientific
Visualization by Cluster Computing", 8th COST 276 Workshop,
Trondheim, Norway; 05/2005

[15] Zorislav Šojat: "Jezik kao samoorganizirajući stroj", Interbiro '82,
Zagreb, Yugoslavia; 1982

[16] Zorislav Sojat: "Operating System Based on Device Distributed
Intelligence", 1st Orwellian Symposium, Baden Baden, Germany;
1984

[17] Zorislav Šojat: “Ustrojenje jezika APL", 1989; Zagreb, YU:
Filozofski fakultet Sveučilišta u Zagrebu

[18] Zorislav Sojat, Sinisa Marin: “ISOCOM 20 Filter System User
Documentation: Flow Through Filter Language and Graphics
Organisation Language”, 1992; BTS, Purley, GB.

[19] Zorislav Šojat: "Nanoračunarstvo i prirodno distribuirani
paralelizam", Glasilo Instituta Ruđer Bošković. 3(7/8):20-22.; 2002

[20] Zorislav Sojat, Karolj Skala: "Multiple Programme Single Data
Stream Approach to Grid Programming", Hypermedia and Grid
Systems, Opatija, Croatia; 2004

[21] Guy Steele, Jan-Willem Maessen: "Fortress Programming
Language Tutorial", Sun Microsystems Laboratories, 2006;
http://stephane.ducasse.free.fr/Teaching/CoursAnnecy/0506-
Master/ForPresentations/Fortress-PLDITutorialSlides9Jun2006.pdf

[22] Jack J. Woehr: "A Conversation with Guy Steele Jr.", Dr. Dobbs,
April 1, 2005, http://www.drdobbs.com/jvm/a-conversation-with-
guy-steele-jr/184406029

http://www.drdobbs.com/jvm/a-conversation-with-guy-steele-jr/184406029
http://www.drdobbs.com/jvm/a-conversation-with-guy-steele-jr/184406029
http://stephane.ducasse.free.fr/Teaching/CoursAnnecy/0506-Master/ForPresentations/Fortress-PLDITutorialSlides9Jun2006.pdf
http://stephane.ducasse.free.fr/Teaching/CoursAnnecy/0506-Master/ForPresentations/Fortress-PLDITutorialSlides9Jun2006.pdf

